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31ATRIX klETHOD OF DETERAHNING THE LONGITUDINAL-STABILITY COEFFICIENTS AND
FREQUENCY RESPONTSE OF AN AIRCRAFT FRO~I TRANSIENT FLIGHT DATA 1

By J.i MEs J. DOXEGU and HENRY A. PE.4RSON

SUNITIARY

.4 matri.c method is prwwnted.for determining hle iongitudinal-
st~biiity coe@a”erifs and frequeny response of an air-c-raft
from arbitrary mawuwrs. The method is clerised so that it
can be applied to time-histoy measurements of combinations
,!~ such simple quantities as angle oj attack, p“tching reiocitg,
load factor, elecator angle, and hinge moment to obtain the
owr-a[l coefj%ien k. Although the method has been derised
primarily for the evaluation of stabilitg coefi~”ertts which are
(~ ptimary interest in most aircraft loads and stability studies,
;t can be used also, with a a~”mpleadditional computation, to
deterrnine the frequency-response charactem”stics. The entire
procedure can be applied or extended to other problems which
can be e~pressed by linear deferential equations.

INTRODUCTION

The longitudinal characteristics of an aircraft are often
related by a second-order linear differential equation in
!vhich the aircraft is assumed to have freedom in pitch and
in vertical motion; changes in forward velocity are so smaTl
tbtit they can be neglected. In the evaluation of tail loads,
the coefficients of the &fferential equation and the ele~ator
forcing function are generally assumed to lx known and the
response is to be determined. In the evaluation of gust
problems the response and the coefficients are awumed to
lx know-n and the forcing function is to be determined. By
amdogl- in stability and control work, it is desirable to
determine the restoring-force and’ damping-force coeffkients
from known forcing functions and responses. In case the
(larnping is small enough to obtain the rate of decay (or
logarithmic decrement) and period from the oscillation, the
required damping and restoring coefficients are easily com-
pilte({. \fodels emploj-ed in rocket-powered and drop tests
can be and usually are so ballasted that such well-defined
oscillations are obtained; how-ever, the longitudinal oscill-
ations of piloted airplanes ordinmly are nearly miticallj-
damped and this analysis procedure cannot be applied. In
an~- case, additional data and analysis are required to
evaluate the control-effectiveness coticients.

Appreciable work has been clone recently in the field of
~letermining the frequency-response characteristics of air-
~.raf~ in flight and evaluati~~ the stability coefficients from

the frequency-response data. In general, the methods for
determining these relationships have been to impose actwdly
prescribed motions such as unit steps, triangular pulses, or
sinusoidal motions to the elev%tor by means of special equip-
ment and then to measure the respom%es. The theoretical
methods for reducing such data are usutilly tailored to fit.
the prescribed eIe-rater motion. References 1 and 2 present
methods of treating input am{ output data by Fourier
analysis to determine the frequency response. Compared
with the direct sine-wave input method of evaluating the
frequencj- response, these methods require less special equip-
ment and flight time at the expense of additionfil conlputa-
tion. For the practical application of the Fourier transform
method, certain restrictions w-e placed on the uature of the
input and the resultant output motions: the motions must
start from a trimmed steady-state condition and, at the end

of the transient period, must approach either the original
or the new steady or quasi-steacly trim conditions.

In -riew of the complications and Limitations of misting
methods of flight evaluation of stabiIitj- coefficients and fre-
quency response, development of a simple and less restricted
flight test and associated analysis was considered clesir-
able. A matrix method for e\-aIuating the longitudinfii-
stabilitj- coefficients of an aircraft, directiy from the input
and output time histories corresponding to arbitrary corl-
trol motions has been derived in the present report. The
frequency response and some of the stability derix-atives
may be evaluated once these coefficients are kno~vn. .&I-
though this method was derived to determine the second-
order longitudintil response of an aircrnft, it can be applied
to other sptems ~hich can be approximated bj- second-
order dtierential equations; extension of the method to
higher-order linear systems is also possible.

SYMBOLS

.4,, .42 combinations of aerodynamic parameters (see
table I)

b wing span, feet
b, tail span, feet
c chord, feet.

c, hinge-moment coefficient
a

()
: ~..>-c~St

r Supe,~~eS .X7ACA T N SWO,f.MatiI Methti of DeteMIinjIIg the I.engitudiml.stability coetljcimt.s and ‘Frequency Responseof an .4ircra[t From Tm.mimt FIight Data” by $amesJ.

Doncgan and Bemy A. Pearson, 1951.
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rate of change of hinge-moment coefficien~ with
elevator an-gle

lift coefficient
pitching-momenL

horizontal tail
pitching-moment

tail surface
acceleration due

second
hinge moment

-(at,/a6)
(L/gS)

coefficient, of airplane without
(Mb/qS2)

coefficient of isolated horizontal

to gravity, feet per second per

air~l.me radius of guyration about pitching axis, feet
empirical constant denoting ratio of damping mo-

ment of complete airplane to damping moment
produced by tail

lift, pounds
airplane mass, slugs (lV/g)
pitching moment of airplane, foot-pounds
airplane load factor
dynamic pressure, pounds per square foot

wing area, square fee~
horizontal-tail area, square feet
time, seconds
true velocity, feet per second
airplane weight, pounds
length from center of gravity of airplane. to aero-

dynamic center of tati (neg~tive fo; conven tiorml
airplanes), feet

dimensional constnnts occurring in equations
(see table 1)

wing angle of attack, radians
tail angle of attack, radians
flight-path angle, radians
angle of pitch (a-l-y)
elevator deflection, radians

dowmwash angle, radicms
de

()
-J-- a

tail efficiency factor (q,/Q)’
phase angle between incremental load factor and

elewtor deflection, degrees
mass density of air, slugs per cubic foot
dummy variable of in kgration
elevator angular veIoci ty, radians per secoml

The notations & and 4, & and 6, and so forth, denote single
and double differentiations with respect to time.
z bar over letter represents maximum value
Ial bars on sides of symbol represent absohlte value

% --–]

y’-
=..

M %----
‘<\

‘..Fligh+ po+h

FIGURE l.—Sign conventionsemployed, Positive directionsshown,

Ifatrix notation:

II II rectangular matrix

[1 square matrix

{1 column matrix

Ilelll integrating matrix (see table. 11)
ljA/1 matrix definecl by equation (24)
IIAI]’ transpose of l\Al/
Subscripts:
{ denotes row elements in matrix

~ denotes colum~ elements in matrix
t tail

LONGITUDINAL EQUATIONS OF MOTION

ELEV.4TOR MOTION

In this section the, usual longitudinal equt-ttions of motiol]
foHowing an elevator motion are flerived in such a manner m
to obtail~ expressions between some of the simple rombilla-
tions of variables which are mensurable in flight: namely,
angle of att~ack and elevator angle, pi tchiug ~mgular velocity
and elevator angle, or load factor and elevator angle. The
usual assumptions of linearity, small angles, no loss in air
speed during the maneuver, aud no flexibility are implied.

As in reference. 3, the differential equations of motion of
a.n airplane due to a given elevator deflection may be written
as (see fig. 1 for definitions):
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By use of the definitions

M=ii7+kY

J=j+&

)

(3)

; =++;

equations ( 1) and [2) are reducibIe to tbe following second-
order differential equation giving the relation between angle
of attack and elevator angle:

&+K1d+A’ZLa=A’S&8+Kkb (4)

Ivhere the K’s are the constants for a given set of conditions
and are defined in table I. The wefficierit KI represents an
etiwtive aerodynamic-damping coefficient; h’z represents an
effect ive aerod.vnamic. restoring-force coefficient; Kz and K4
represent effective elevator-control power coefficients.

.$n alternative form of equation (4), expressing the relation
between angle of pitch and elevator angle, may be obtained
by inserting relations of e.quation (3) into equation (4) and
notimg from equation (1) that

+=.4 LACY+A4*M

+=.41 ti+A42i (5)

~vhere .41 and ..2 are combinations of aerodynamic param-
eters defined in table I. The equation obtained after
these preceding substitutions are made is

J
f

6+-K1.4+K2AO=K5A.6+-K6 A8 dt (6)
o

where (see table 1)

From the follo~{ing definition for load-factor increment

it follows that

(7)

(8)

TABLE I.—DEFINITION’ OF CONST.iXTS OCCtiRRING
IN EQUATIONS

De6nition I

I

dc.

&q’30

The ~ ~ term in equation (8) was found to be small and

is omitted ‘in the subsequent derivation.
Substituting the results from equation (8) into equation

(4) yields another form expressing the relation between
measured load-factor increment and elevator angle as

n+A71ti+K2Ln.=K7& 6+KSJ (9)
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where (see table 1) X7 and Kg are now different forms of the
effective control power coefficients.

HINGE hfOhf ENT

The coefficient’s K, tO & OWUrr@’ k f2~U&kiOIlS (4), (6),
and (9) are those associated with the measured elevator-
motion case. The use of the relation

gives the solution for A~ as

(lo)

(11)

The increment in tail angle of zttack to be su’ostit.uttd in
equation (11) is giveu by

(12)

so that

(13)

In order to shorten the subsequent derivation for the hinge-
moment case, the term Ki~ in equation (4) and its counter-
parts in equations (6) and (9) are omitted. This effwt. is
usually small; hoivevcr, each individual case should be exam-
ined to sec whether the term warrants dropping.

A substitution of the value of A6 given by equation (13)
into equ~tions (4), (6), and (9) gives the following three
clifferential equ~tions for the same combination of variables
\rith flh &nt] its integra} replacing A6:

;+~<10&+_jy20 AQ=&0(T), (14)

r
gh’50 ~~,, ~t

6+ K,C16+K?A8=K30C,+ –TT- (15)
.0

ii+ K]” H+Kz” An = KS°C’fi (16)

INTEGRAL FORM OF EQUATIONS

Although equations (4), (6), (9) and (14), (15), (16) could
be used to evaluate the. effective K coefficients from flight
measurements of Aa, 0, and An together with measurements
of ele\7ator angle, stick force, or hinge moment, it is seen that
severs] differentiations of the measured data \vould be re-
quired. Inasmuc% as a numerical differentiation process is

inhcrcnt~y more inaccurate than the corresponding integra-
tion process, the prweding equations are changed and
rearranged so that either Aa, d, or An, which are to be the
measured values, appear as separate quantities on one side
of the equation and the op~rations on these quantities
appear on the other side. In integral form th[’ rearranged
equations are

J
t

K, A.15(lt=-Aff
o

(17)

K’”+K’J’od’-K’L’A’’t-K’lfl”A’d’d’=-’“8’

J
t

K, A8dt=—Art
0

(19)

J
t tr

l’s
17

K,o Aadt+KzO AaJdrdt–h’s”
IT

{’), dT dt= —ACI
o ,0 0 ,0,0

(20)

In principle to solve any one of these equations for the K’
coefficients, it is only necessary to tabulate the recorded
values of the t~vo basic variables (for exampl~, in equation
(19)thevalues of An and M) &t a number of points tl, k k
and so forth along a given time history and to perform the
indicated integrations from t=O up to the time of the recorded
value ft. A number of simultaneous equations containing
the unknown K’s result }vhicll are then solved. The nurntwr
of equations can vary from a minimum, in which tht’ number
of ordinates is equal to the number of unknown .Ws, to the
case where there are more equations than unknowns. JVllen
the number of ordinates equals the number of UIkIOWI~ K’s,
the usual methods of solving simultaneous equations may be
used to obtain the K’s; how-ever, when there are more. equa-
tions than unknowns, a least-squares method is required to
reduce the equations. Since the besb average value of the
K’s is obtained when many points along the tin-w history are
used, a least-squares procedure is generally preferable.

Although the integration indicated in equations (17) to
(22) can actually be perfomnecl graphically from the tirnc
histories, it is deemed bet t.cr to express the equations in
matrix form in order to cmible a complete numerical solution
to be made.
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YL4TRLY FOR%I OF EQUATIONS

Since tbe cferi~ation in matrix form for a~y one of equations (17) to (22) is the same as for any other equation, only
equation (19)Y involving measured load factor and elevator angles, is used. In rnatri.. form the system of simultaneous

equations obtained from reading the time history of the loacl factor n against elevator a.ngk 3 in an arbitrq- pull-up may ‘w

,,

In shorter form this expression ma~ be rewritten as

lvher~ the matrix
that is, for cl-em
matrix IIAIIis obtained.

(24)

is in genera~ a rectangular matrix;
fi, one equation or one ro~ of the

The individual elements of matrix
11.AIIare evaluated from the known dues of incremental
Iowi factor and incremental elevator angle. As mentioned
prwiousl~-, the integration ma~- be performed graphical]>
but in the present case. use is made of the integrating
matrices derived in reference 4. Thus, an~- element in the

-t
rert.angular matrix (equation (23)) such as

I
An cif or

.. 0
t

N

7

An clr df may he expressed in matrix form as follows:
.0.0

The integr~ting matri~ IIC’ll\as derived in reference 4 is
given in tabIe H, with a time intern-al N=O.1 second. It
should be noted that a sufficient number of time inter-ra.ls
within the natural period being computed must be chosen to
give a solution; usually the shorter the time interval chosen
for the integrating matrix, the more accurat~ wiIl be tlw
final solution.

titer

.— (23)

sments of the. matrk .4 (eauations (23) and
(M)) have ~~endeterfied either bj-’a~pl@~ the’ inte-

~~atin~ matr~~ or b}- graphical integration, the method of

least squares is applied to the solution of the system of
simultaneous equations. In matrix notation the leasL-
squares soIution involres multiplication of matrix .4 by its
transpose .4’ so that equation (24) becomes

[.4’.4.] {K,)={ –.4’&zi} (26)

where the matrix [.-!’.4] would be a 4 b~- 4 matrix for equa-
tions (18) and (19). Equation (26)can now be arranged to
be solved directly for the KS by multiplying b>- the inverse
matrix [.4’.4.]-1 so that finally

Mt.ernately the s>-stem of simultaneous equations repre-
sented by equation (26) can be soIved for the values of A“ by
any of the N-elI-known methods of solving sets of simul-
taneous equations, that is, by eliminating the variables or by
using Crout’s method (reference 5j. The deri-mtion in
matrix form of any of the other equations from (17) to (22)
k simiIar to the plan git-en for equation (19) and, therefore,
is not given.

FREQUENCY RESPONSE

As first derived b~ Cornell Aeronautical Laborator~
(reference 6), the frequmcy response was mmsured hy
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TABLE 11,—INTEGRATING MATRIX [C,]

[Bawd on 0,1-secintervals]

i
— -

0
.1
.2
.3
.4
.5
.6
.7
.8
.9

1.0
1.1
1.2
L 3
1,4
1,5
1.6
1.7

0

.-.....-
-. ...-.

0.1 0.2
—

-------- ........
....---- ......_.

0.3

0
0
0
.C46667
.133333
.133333
.133333
.133333
.133333
.133333
.133333
.133333
.133333
.133333
.133333
.133333

------—
------- .

0.4

0
0
0
–. 003333

.033333

.075000

.066667

.006667

.066667

.066667

.066667

.06666?

.066667

.066667

.066667

.066667
--------
-- . . . . . .

actually subjecting the airplane to sinusoidal elevator mo-
tions of various frequencies t)~’means of specially constructed
apparatus. From these results the coefficients K*, K*, and
so forth, which are significant iu control and loads work,
could be determined provided the equation of motion was
assumed.

In the present instance since the coefficients l?, and Kz

are cktermined ciirectl~ from the equation of motion} the
corresponding relations are given so that the frequency
response, which is signfitcant in the design of stable autopilot
systems, can also be determined.

When a sinusoidal elevator motion has been assumed,
then equation (9), omitting the minor effects of Ks($,becomes

\vbere An is the load-factor increment. and u is the angular
velocity of the elevator. Since equation (28) is a ~inear
equation with constant coefficients, the steady-state solutions
are of ~he form

n=ii sin (wt+f#)
)

Ily a subst,itut ion of these relations into equation (28) the
following e.qua.tion is obtained:

—Ew2 sin (ut+@)+K17iw cos (tit++)+
Kji sin (d+@)=K7~ sin d (3o)

which may be rewritten as

ii(&r2-@ sin (tit+ O)+K,7iw cos (d+ #) =K7~ sin o.t (31)

or
B sin (tit+@+ e)=K7~ sin tit. (32)

where

B= K,&fiw@& d)’+ (Klti)z (33)

and

(34)

l?rom equation (33) the amplitude ratio of load factor to

0.5
—-

0
0,
0
0
0
.0+6667
.133333
.133333
.133333,
.133333
.133333
133333

:133333

: w%
.133333

------- &
------- <

0.6

0
0
0
0
0
–. 008333

.033333

.075W3
0G6N37

.006667

.066667

.066667

.006667

.066667

.066667

.066667
----.—.,.
-. ...-. .

0.7

1!
o
0
0
0
0
.CJ.i6667
.133333
.133333
.133333
.133333
.133333
.133333
.133333
.133333

0.8

0

8
0

:
0

–. 006333
.LX33333
.075000
.060667
.066667
.06m367
.066667
.066667
.066667

. . . ..-.

. . . . . . . .

0.9

.-v -

. .

..—
——

-.

elevator angle is seen to be
z K7==.
8 @,-@~+(KICo)’

(35)

and the phase angle at various frequencies is given lJy
equation (34).

In the present caw the values of K,, K?, and K, would
have been derived from the flight measurements and the
values of w would be assigned.

For the measured hinge-moments case tho values of Kl”
and KzOwould be used inst mid of .K1 and .K1, and so forth,
The complete frequency-response relations and transfer
functions including all derivatives and integral of b for
equations (4), (6), and (9) arc given in the alJpcndix.

DETERIIIINATION OF AERODYNAfiIIC DERIVATIVES

The various K coefllcieuts determined from the meas-
ured values may be termed effwti ve coefllcients find include,
to some extent, effects of some nonlinearities, elasticity
and effects of other variables which arc omitted in t.hc
usual analysis. In addition, as may be seen from table
1, the K-coefficients are combinations of various qutitlt.it.ies
involving known geometric. qualities, the conditions of the
problem as well as aerodynamic derivatives. The stabili~y
coefficients given in table I are expressed in a form stlitable
to loads work. In usual stability calculations, three co-
efficients are generally expressed in a simplrr form ~vhere
the number of aerodynamic variables are reduced and, as
a resultj the coefllcients are more easily approxim~ted.

the cooffici~nts of talde 1. Mthough all the aerodynamic
derivatives cannoL bc determined directly from the four basic
coeflkienk (namely, KI, KQ, K3, and k-l) ~engineer-mg approxi-
mations of the more significant derivatives can be obtained
if values are assigned to either some of Lhe more accurately
known derivatives or to those factors having lew,t inhence
on the problem.
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The facto~ having the lezst influence on the problern are
df’

K, ~,, and the derivative -& which, respectively, allow

for the contribution of wing-fuselage damping, tail efficiency,
and moment due to tail camber to which average values
can be assigned. A representative -ialue of h“ k 1.25.
Representative values of q, range from about 1.2 to 0.8
\vith the I@kr limit applying to propeIIer-dri-ren airplanes
op~’rating at low speed and fuH po~ver and the lower limit
appi~-ing at high speed vrith the propeller braking. .&n
average value for j&s or zt. zero thrust for propeller-dri~en

d (’
airplanes is about 0.9. .$ representative Value of &

can be obtained from e.tisting wind-tunnel data or tj>- usi~~
theoretical methmk; —0.5 is an a~erage value for tail
surfaces.

Sinre, as may be seen from table I, 1<1is directly propor-
. ..

d (..’Lt
—~ an effective value of tl~is derivative can

‘iOnal ‘0 db
IJC determined directly from the definition of h’,.

In order to determine consistent wlues of the remaining

. . d(?zdCrnde ‘(’L,dC,
wgmficant aerodynamic deriya. tives — — —da ‘ da ‘ z’ da, ‘ z’

d~h
and ~, further values must be assigged to se\-eral of the

remaining deri-rati~-es. The deri~atives choseD ~t-otdd natu-
rally be those for which values could be obtained from other
sources with the greatest degree of accuracy.

EXA31PLES

In order to illustrate the foregoing method as well as the
consistence- of results obtained with different sets of instru-
mentation, typical examples are gken wing data obtained
from three flights (referred to as flight 1, flight 2, and flight 3)
of a lLigh-speed medium jet bomber. For flight 1, the method
of a romp{ ltation is obtaified in sufficient detaiI to enable a
rezder not too familiar with the mathematical details to
rt’pf’o([llr~ Similar f’WU1k. Flight I is further divided into
<LawI where clata for ~n and 46 are used and case II \\-here
(Iata for 6 and A6 are used. References 7 and 8 ma~- be
{wnsulted for introductor~- discussions of least-squares and
matrix methods.

Figure 2 sho~vs the measured time histories of veIocit~-,
altitude, incremental elevator displacement, incremental Ioad
fartor, and incremental pitching veIocity obtained during a
ljlLsh-(lown pull-up maneuver. By means of the values from
figure 2, ~crements in load factor and elevator zngle at

@.~-second intervaIs ha}-e been tabulated in columns 2 anc~3
of table 111. Tile elements of the .4 matri.. (equations (23)
and (24) ) are given in columns 4 to 7 of table 111. Each
element in these columns has beeu determined by performing
the indicated integrations on the results given in columns
z and ~. In this imstanre the integrations have been

performed by use of the pre~iously mentioned integrating
matrix derived in reference 4. This method is particularly

8oo- [

~o
~ % ,iOo - II 1111111 _<>’~s Ill 1-1111”--

0- II 11111 II I
I

mne,sac

FI,;CRE 2.—Time histories of ‘relocit y, aItitude, fncrememal elevator dis Imem.wt, fncre.
?“mental lmd factor (mmput&dsncfmemssed), and incrementa~ pitching Ye oclty (mmputed

and measmmi) for Ilight 1 8C Mxh number 0.!0.

suitable when automatic computing rnarbines are available.
The elements of matrk .4 (equation (23)) which are given

in columns 4 to 7 of table 111 in(lieate that with the At
spacing used there are 23 equations involving the four
unknown Values of h’. Iu order to obtain the kast-squares
solution of these equations, the transpose 1[-A\l’of matrix [[-A[\
is requirecl. The transpose matri~ is obtained by inter-
changing the rows and columns of matri~ 11A-I].

The. product of the 4-row, -~3-column transpose mah-k by
the %-row, 4-column original matri~ yields the 4-row,
4-column matrk in the coefficients of Art. The resulting four
simultaneous equations are then solved bl- any of the w-eLl-
known methods of solving sets of simultaneous equations.

By performing the preceding operations, the following
va~ues of Arw-ere obtained from the data listed in table 111:

A“, A“z & 1<8
3.314221 7.339706 —119. 553905 5.819025

In order to show how rvell these computed values of A“
represent! the originaI data, thej- have been reinserted into
equation (19) along with the measured values of La to deter-
mine calculated values of J.n. The computed curve is giwn
by the clrtshe{l line in figure 2 of the plot of An against f.
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—
1

Time, t
(see)

o

:;
.3
.4

::
.7
.8
,9

1,0
1.1
1,2
1,3
1.4
1,5
1.6
1,7
1.8
1.9
2.0
2.1
2.2
2.3

2

Acceleration
increment,

An

o
.054

-.054
—.111
–.254
–, 44’4
-. 59s
–. i84
-.965

-1.1’2’2
–1.291
-1,462
–1.575
–1.704
–1. 739
–1.837
–1.801
-1.700
-1.569
-1.305
-1.116
–. 869
—.564
–. 315

TABLE 111.—TABULATED VALUES FOR FLIGHT I

3

Elevator angIe
, increment, A~

(radians)

o
.040687
.077666
.082902
.085084
.089010
.093810
.098610
.103846
. 1063QO
. lo~osl
. 10S645
.108645
.108645
.107336
.053668
.003491
00+800

-.004799
–.017017
–. 026179
–. 036651
-.041387
-. C45814

4

0
.034050
.005100

–.002133
-. 01!3667
–. 05.!950
-.106933
—.175658
-. 2&j233
–. 367483
–. 488033
–. 626166
—.778500
-.943233

–1. 116166
–1. 296083
–1. 479099
–1. 654399
-1.8180’39
–1.961174
–2. 081599
–1 181332
–2. 253466
-2.296799

Th{’ same process as was used for the relations of An and M
was also applied to the reIations of d and A5 showm in figure 2.
The tabular material corresponding to t~ble III k not
incllided; the values of K obtained, holverer, were as foI1ows:

K, K2 A’b
:). 13167 8.4123 —~. f3~12

Thesc values of L7 when reinserted into
resulted in the computed curve of d given
curve of figure 2.

K,
–12. 1967

equation (18)
b)- the dashed

In addition to the preceding computations, several pLLsh-
down pull-up maneuvers, made under similar conditions of
altitude, weight, and center-of-gravity positions, were ana-
lyzed to obtain the variation of several of the computed Ks
~vitll llach number. In this analysis only, the measurements
of An find Ad were used. The results obtained for three l~ach
nLimbers are shown in figure 3. The short parts of the curves
showm are the expected variations in the K’s. Table I shows
that, KI shoulcl vary linearly with speed and the other values
of K should \Tary parabolicaHy, TILe curves shown are
merely guides adjusted to pass through zero and through the
vtdue of K at the 0.45Nlach number point.

!ilt values of K, and K, shown in figure 3 were aIso inserted
into equations (34) and (35) to determine the corresponding
curves of frequency response. The results are given in
figure 4.

In addition the values of K,, K,, a~Ld frequency response for
case I have been comput.e(l by using tll.e definitions of table I
and aerodynamic deri~-atives obtained from wind-tunnel
tests. These results are also showm in figures 3 and 4. The
aerodynamic derivatives were listed in an unpublished report
by the ATorth American Aviation, Inc. and were obtained in
the Southern California Cooperative Wind Tunnel.
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.01W225
.06m20
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–.0000JO
–. C#3032
—.ol158i
-.025559
–. 047347
–. 07S747
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,— —.176978
–. 247053
–. 333111
-.$36013
–. 556599
-.695333
–.852104
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–1.417305
–1. 630682
—1.852652
–2. 0!+03.41
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_. ~g~~~
–. CmLJIl
–.oIEbs@3
-.025”592
–. 033990
–. 043124
–. 052741
-. 062s40
-.073105
–. 0s4211
–. CD5031
–. 10.5954
–. 116s30
-.127610
–. 135661
–. 13s460
-. 138s95
–. 13M.S6
–. 137970
-. 135%5
-, 13!2e00
-.128329
-. 124!284

If only the frequeney response is desired, it can be d<’tcr-
minecl without recourse to the equations of motion; however,
if the stability coefllcien~s are desired, it VW k necessary to
use the equations of motion as has bwn done in the present
report. For either case sewra} mathematical] methods are
avaiIable (references 1, 2, and 6) to obtain thw required
quantities and all methods, if carried far enough, shoul(i
yield similar results. Thus, the present method is basically
no more accurate than any other method; however, it has the
advantage of simple instrumentation and exp~’rimental
procedures but may require more extensive computation.

.4s with other methods where linearity is a basic. zssunlp-

tion, most. consistent results are to bc expected when the
maneuvers are confined to the angle-of-attack region tvllere
linearity exists. In order for the o[ltlined nmth(’n)atica]
procedures to succewl, the maneuvers should cover m nlllcl)
of the linear range as possible in a shOrt periO(l of time am{

the portion of the maneuver considered shoulcl be confined
to that portion \Yhcre the integrals are increasing, This
prfictice insures that the elements of the origimd mmtrix ~1
are all differwt and that the subsequent, least-squares
matrix [A’.4] is not ill-beh~ved. Enough of the response
time hist-orj- shoulcl be taken to cover a good portion of the
natural period of tlke system. .< point worth noting in
connection with the LHeof the equations is that zero time is
assumed as being at. tile st~~rt of the maneuver when the
airplane is in steacly flight. Sinc~ the prrwnt method is not
restricted by the find condition, it offers tl~c possibility of
performing an anaIysis on fragments of curves with the result
thak any varia tions in the constants may be dctermind.
In such an analysis two possibilities occur: (1) where tlie
fragments considerccf start from a fixed initial condition and
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FI!;rEK 3.—Variationsof K, and L-j w}th >lach mumk.

t)ecwme successively longer, anti (2) where the fragments m-e
tzken as consecutive. In the fist case, the present method
may be applied without any moclifictition; in the second case,
the equations must be altered to introduce the iuitizd condi-
tions for each fragment. These possibilities have not,
ilowever, been mplored.

In the derivation gi-ren herein, lag in downwash has been
inrluclecf (see equ~tinn (2)) but unsteadl- lift effects have not.
References 9 and 10 show that for the present purposes the
inaccuracy of omitting unsteacly flow effects, except down-
wash lag, is protlabIy no greater than the inaccuracies in the
original assumptions or of the e.xperimentaI data.

other terms and other combinatiom~ of measurements
might luive been included in the derivations given—for
instance, the equatiom~ are readily aclapted to measurement
of tail load and either airplane load factor, airplane angle of
attack, or pitching angular Yelocity. .4dditiona1 terms may
have been included to account for fle.xihiIitJ-. Also it is
possible, as for example in the case of the hinge-moment
rthtions, to include additional terrm to account for elevator
moment-of-inertia effect, rate of ele~ator motion, and so
forth in order to make the methods more inclusive. The
inclusion of these further ternk~, however, generally requires
aclciitionaI A7s to be evaluated and would only be justified
tvhen the assumptions implied in the basic equations of
motion can be more closely approached and -n-hen the
a(t’uracy of measurements is high. Although the method
had been applied bwein to second-order differential equations,

0 [ 2 3 4 5 6 7
e, tvdian.s/sec

FIGCRE 4.–.kirplam frequency ITSDOIIW.

it may be extended to higher-order equations with the limita-
tion that too many integrations clestroy the conditioning of
the equations used in cietermining the coefficients (equation
(26)) and make the equations difficult to work with.

The results of the sample computations in -which tw-o
different sets of instrumentation were used indicate an
average difference between the respective K coefficients of
about 10 percent.. The use of a least-squares method
permits calculation of a probable error: which is an indication
of how ~rell the second-order system and the coefficients
(computed on the basis of O.I-second time intervals) fit the
data. The expression used in computing the probable error
. .
1s

where Bii is the main diagonal term of [A’.4]–1, E is the
difference between the computed and measured value of the
wriabie, .\r is the number of cases com<idered in the least-
squares procedure, and K is the number of variables deter-
mined. This probable error has been calculated for case
I and case H and indicates an error of +0. 3 in 111and +0.5
in AG for the computations in wl~ic+ the accelerometer
measurements were usecl. These values are contrasted with
probable errors of &O.1 an(i +0.3 for the pitching-angular-
-relocit~- measurements. These probable errors are clsso-
ciatecl ~~ith the very small differences between the solid-line
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anti dashed-line curves shown in figure 2. Greater accuracy
may be obtained by increasing instrument aeruraq-, record-
reading accuracy, and correcting original data for instrument
errors. Further accuracy in the method mzy always be
attained by using smaller time intervals.

The reslllts shown in figure 3 for the three flights investi-
gated give some idea of the scatter to be expected between
runs as well as the variation of the coeflkients K1 and KL with
31ach number. .& might be expected from the definition,
K, is seen to vary lint’ar]y with AIach number with little scat-
ter. On the other hand, the values of Kz either indicate a
linear variation with hIach number or a scatter about the
expect~xl parabolic variation.

The wmputcwl values of K, wd K2 (fig. 3) obtained from
the wind-tunnel data are in fair agreement with the flight-
iest values. For many engineering purposes this agreement
mtiy be adequate and probably typical of wha~ might be ex-
pected if wind-tunnel data were used at the design stage.
Since all of the ~“s are defined in table. I, the dynamic longi-
tudinal characteristics of an aircraft may be estimated in the

design sttige by computing the L7’s and inserting the wlues
in the frequency-response relations gi~en in the appcn(lix,

CONCLUDING REillARKS

~ matri.~ method has been presented for determining th(’
longitudinal-stabiIit~- coefficients and frequelicy response of
an aircraft, from an anal~-sis of wbitrarj- marwuvers in which
simple iristrumentatioll is used. Errors in instrume]lt ac~cn-
racy and probable errors clue to the use of a kast-squares
method are briefl~- discussed. Possible improvement in th c
method are discussed butj M of the present, it. app~ars im-
provements would be justified only for those cases where the
basic assumpt,ioIls are close]~ approached and whele instru-
ment accuracy is high. The method is equally applicable to
other problems which can be expressed by second-order
differential eq uat ions.

LAN~L~Y AERON.AUTTCALLABOR.~TORY,
NTATIONAL.4DVISORYCOMWTTJZEFOR.%~RONAUTICS1

L. W~LEY FIELD, VA., December 15, 1950.

APPENDIX
FREQUENCY-RESPONSE RELATIONS

h the body of the report the phase angIes and amplitude ratio were give~ for o~dy the simplest case. The complete
frequeucy-response relations and transfer functions for the equations involving 3 and its derivatives are now presented.
If D represents the differential operator d/dt, then the steady-state response due to a sinusoidal forcing function can he
tained by substituting ~u for Din the transfer function. The following relations were developed by this procedure:

— .—

Equation Transfer Function
I

Phase Angie .imp~i~ude Ratio

I

oh
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